Combining Regressive and Auto-Regressive Models for Spatial-Temporal Prediction
نویسندگان
چکیده
A two-phased method for prediction in spatialtemporal domains is proposed. After an ordinary regression model is trained on spatial data, a prediction is adjusted by incorporating autoregressive modeling of residuals in time. The prediction accuracy of the proposed method is evaluated on simulated agricultural data with a significant improvement of accuracy for both linear and non-linear regression models. The obtained experimental results suggest that when auto-regressive residual modeling is included, computationally more efficient linear regression models may predict almost as good as non-linear ones.
منابع مشابه
Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average
Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کامل